A PROPOSITIONAL p-ADIC PROBABILITY LOGIC
نویسندگان
چکیده
We present the p-adic probability logic LpPP based on the paper [5] by A. Khrennikov et al. The logical language contains formulas such as P=s(α) with the intended meaning “the probability of α is equal to s", where α is a propositional formula. We introduce a class of Kripke-like models that combine properties of the usual Kripke models and finitely additive p-adic probabilities. We propose an infinitary axiom system and prove that it is sound and strongly complete with respect to the considered class of models. In the paper the terms finitary and infinitary concern the meta language only, i.e., the logical language is countable, formulas are finite, while only proofs are allowed to be infinite. We analyze decidability of LpPP and provide a procedure which decides satisfiability of a given probability formula.
منابع مشابه
LOGICAL APPROACH TO p - ADIC PROBABILITIES
In this paper we considered a moving from classical logic and Kolmogorov’s probability theory to non-classical p-adic valued logic and p-adic valued probability theory. Namely, we defined p-adic valued logic and further we constructed probability space for some ideals on truth values of p-adic valued logic. We proposed also p-adic valued inductive logic. Such a logic was considered for the firs...
متن کاملEquality propositional logic and its extensions
We introduce a new formal logic, called equality propositional logic. It has two basic connectives, $boldsymbol{wedge}$ (conjunction) and $equiv$ (equivalence). Moreover, the $Rightarrow$ (implication) connective can be derived as $ARightarrow B:=(Aboldsymbol{wedge}B)equiv A$. We formulate the equality propositional logic and demonstrate that the resulting logic has reasonable properties such a...
متن کاملConditional p-adic probability logic
Probability model of a p-adic coin Conditional p-adic probability logic CPL Qp
متن کاملTruth Values and Connectives in Some Non-Classical Logics
The question as to whether the propositional logic of Heyting, which was a formalization of Brouwer's intuitionistic logic, is finitely many valued or not, was open for a while (the question was asked by Hahn). Kurt Gödel (1932) introduced an infinite decreasing chain of intermediate logics, which are known nowadays as Gödel logics, for showing that the intuitionistic logic is not finitely (man...
متن کاملA Note on Probabilistic Validity Measure in Propositional Calculi
The propositional language extended by two families of unary propositional probability operators and the corresponding list of probability measure axioms concerning those operators is the basis of the system preseted here. We describe a Kripke-type possible worlds semantics covering such a kind of logical systems. 1 The central point of this short note is the treatment of a propositional calcul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010